cgChIP: a cell type- and gene-specific method for chromatin analysis.

نویسندگان

  • Marios Agelopoulos
  • Daniel J McKay
  • Richard S Mann
چکیده

Hox and other homeobox-containing genes encode critical transcriptional regulators of animal development. Although these genes are well known for their roles in the body axis and appendage development, little is known regarding the mechanisms by which these factors influence chromatin landscapes. Chromatin structure can have a profound influence on gene expression during animal body formation. However, when applied to developing embryos, conventional chromatin analysis of genes and cis-regulatory modules (CRMs) typically lacks the required cell type-specific resolution due to the heterogeneous nature of animal bodies. Here we present a strategy to analyze both the composition and conformation of in vivo-tagged CRM sequences in a cell type-specific manner, using as a system Drosophila embryos. We term this method cgChIP (cell- and gene-specific Chromatin Immunoprecipitation) by which we access and analyze regulatory chromatin in specific cell types. cgChIP is an in vivo method designed to analyze genetic elements derived from limited cell populations. cgChIP can be used for both the analysis of chromatin structure (e.g., long-distance interactions between DNA elements) and the composition of histones and histone modifications and the occupancy of transcription factors and chromatin modifiers. This method was applied to the Hox target gene Distalless (Dll), which encodes for a homeodomain-containing transcription factor critical for the formation of appendages in Drosophila. However, cgChIP can be applied in diverse animal models to better dissect CRM-dependent gene regulation and body formation in developing animals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-208: Analysis of H2BFWT Gene Alterations in Severe Oligospermic and Azoospermic Infertile Men Referred to Royan Institute

Background: Telomeres play a dramatic role in sperm pronuclei formation and subsequently successful fertilization. The H2B family, member W, testis specific (H2BFWT) gene encodes a testis specific histone that colocalized with telomeric sequences and interfere in the dynamic rearrangement of telomeres at late stages of spermatogenesis. H2BFWT is essential for transmission of the telomeric chrom...

متن کامل

P-232: Gene Expression Analysis of the Histon Variant H2BFWT in Testis Tissues of Non-Obstructive Azoospermic Patients Referred to Royan Institute

Background: During the later stages of spermatogenesis, spermatid nuclear remodeling and condensation are associated with histone modifications and the sequential displacement of histones by transition proteins and then by protamines. In humans, approximately 15% of the sperm DNA remains packaged by histones in sequence-specific areas. The histone variant H2B, member W, testis-specific (H2BFWT)...

متن کامل

P-116: Absence of JMJD1A, A Testis- Specific Histone Demethylase, in Tissue Samples of TESE Negative Men

Background During mammalian spermatogenesis unique and dynamic epigenetic events occur leading to chromatin condensation. Through these events, histone demethylases such as JMJD1A play important roles in compaction of sperm chromatin, due to regulation of histone methylation dynamics and alteration of chromatin structure. As �histone methylation� is one of the best-characterized modifications i...

متن کامل

P-215: Discovery of A Novel APA Variant of A Human Potential Gene Based on Expressed Sequenced Tags Analysis

Background: Expressed sequence tags (ESTs) are sequences of cDNA fragments prepared from different tissue sources. There are over one million of these sequences in the publicly available database, and these sequences are believed to represent more than half of all human genes. The ESTs belong to different cDNA libraries, was prepared from one particular cell type, organ, or tumor. Therefore, th...

متن کامل

P-209: Decreased Expression of Histone Acetyltransferase CDY1 Gene in Testis Tissue May Lead to Decreased Expression of Transition Protein (TNP) and Protamine (PRM) Genes,Causing Male Infertility

Background: Infertility is a complex medical problem. About 15% of couples are infertile, and male infertility being involved in roughly 50% of the cases. Among these, many cases are associated with a severe impairment of spermatogenesis. During the last stage of spermatogenesis (spermiogenesis), sperm chromatin endures complex modifications in which histones are lost and depositioned with tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Methods in molecular biology

دوره 1196  شماره 

صفحات  -

تاریخ انتشار 2014